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Fingering in a driven Hele-Shaw cell
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A modified Hele-Shaw cell in which the plate gap can be modulated in time was constructed. Highly
nonlinear fingers on the interface between air and water in the cell were observed as the plate gap was driven
at a variety of frequencies, but typically near 60 Hz. Modified equations to describe the flow in a periodically
driven cell were derived and the linear stability analysis of waves on a circular fluid-fluid interface was
performed.

PACS numbd(s): 47.20.Ma, 47.54+r, 05.45.Xt

I. INTRODUCTION Il. EXPERIMENTAL APPARATUS

The essential portion of the modified Hele-Shaw cell is a

The Hele-Shaw celltwo parallel plates separated by a 7.62 cm(3 in) radius circular quartz plate below and a 6.35
small gap through which fluids flowhas been used exten- ¢cm (2.5 in) radius stainless-steel upper plate. The lower
sively to model fluid flow in highly resistive porous media, quartz plate is a 1/4 wavelength optical flat and is thus flat to
as well as a device for the study of simple pattern-formingunder 0.2um. The upper plate was machined to be flat to
systems[1,2]. Hele-Shaw cells are used to model flow in @Pout 15um, and has 3um deep random scratches from the

porous media since in both systems the fluid velocity is sim{inishing process. For the experiments reported here, the gap

ply proportional to the gradient of the pressure. Darcy’s lawP€tWeen the plates was in the range 230420 The upper

expresses this as= —MVp. In the Hele-Shaw cell, the ve- plate is supported via a 1/4 in. thick aluminum plate that is

locity is averaged over the spatial dimension perpendicula\Iself attached to a Terfenol actuat8], which allows the

2 . plate to be moved up to 8@m up or down at frequencies up
to the plates, af.““" b /;2'“! whe_reb is the gap between to 2 kHz. The lower plate is supported in a stainless-steel
the plates andk is the fluid viscosity.

The unstable interface between two fluids of differing vis-base’ with a 6.35 cm radius hole that allows the fluids in the

. X . cell to be observed from beloyFig. 1).
cosity form one of the simplest pattern-forming systems. 1nq cell was typically driven near 60 Hz, to keep it far

Since the velocity is proportiqnal to the g.rad'ient of the pres+.om any mechanical resonances in the apparatus and to al-
sure, and fo'V-v=0 whenp is constant in time, the pres- oy synchronization with a videocamera’s field rate of 59.93
sure obeys Laplace’s equatiifp=0. Thus, the unstable Hz. Other multiples or factors of 60 Hz were also uged.,
growth of a driven interface is an example of Laplacian180 or 15 Hz. The fluids used were most typically water and
growth, a class of problems that includes dielectric breakair. The water had 3 g/liter of fluorescein dye added and the
down, diffusion-limited aggregatiofDLA), and the colonial apparatus was illuminated from below with ultraviolet light.
growth of certain organisms. Multiple variations have been
studied extensively: immiscible, miscible, and non-
Newtonian fluids, rectangular, and circular geometries, as
well as cells with various symmetries etched on one or both Both the continuity equation and Darcy’s law must be
faces[3—6]. modified for this new cell. One wishes to reduce the problem
A modification of the Hele-Shaw cell was designed andto two spatial dimensions by averaging all variables over the
built that allows the gap to be varied in time. The motivation
was to introduce a method in which the interface could be

IIl. EQUATION MODIFICATION

z

driven periodically. For the parameter values where the flow

can still be viewed as two dimensional, the plate variation Terfenol acutator

has the effect of drawing fluid o@& sink), or putting fluid in

(a sourcg at each point in the plane. Thus the pressure is no Support structure Moveable stainless
longer governed by Laplace’s equation, but by Poisson’s \ 635 cih stecl plate

equation. — /

~ Equations for the fluid velocity in the-y plane are de- W)y All_r _
rived in this paper, and using these, the linear stability analy- 7l X

sis for an initially circular interface between two fluids in the Plate gap ()" &g = ‘
cell is performed. Preliminary experimental results are re- 7.62 cm \Smi ek
ported, especially the behavior of the fingers which form on onary quartz p

the driven interface. FIG. 1. Cut away side view of the cell. The inner fluid is con-

fined to the space between the plates, while the outer fluid is be-
tween and surrounds the plates. The axes defined in the text are
*Email address: steven.n.rauseo@wheaton.edu shown. The fluids are illuminated and viewed from below.
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direction perpendicular to the plate€all this thez direc-
tion.) Define a two-dimensional velocity to be thex andy
components of thez-averaged velocity, e.g.u,(X,y)
=(1/b)f8vx(x,y,z)dz, where the origin is set at the center
of the cell in thex andy directions and at the bottom plate in
the z direction.
Begin with the continuity equatiorp(V -v)+ (dp/dt)
=0. In the case where the fluid densjyis constant with
time, one is left with ¢/dx)v,+(d/dy)vy,+(dl9z)v,=0.
Averaging the first two terms over the direction simply
gives the divergence of the-averaged velocityu. The
third( term C;i then (1) (9/92)v,]dz=v,(x,y,z=h) FIG. 2. View of cell from below definindRq,; andR(t).
—v,(X,y,z=0).
The z component of the velocity must be zero at thehich is an operator in time only. Then the equation of mo-
lower, stationary plate, but it must match the motion of thetjgp [Eq. (4)] can be written as
top plate, so it is {/dt)b(t). The new continuity equation is

therefore Du=—Vp. 5

V.u=- b(D) S P (1)  Taking the divergence of both sides and combining with the
continuity equatiorfEqg. (1)] yields the Poisson equation for
To derive the new equation of motion for the fluids in the the pressure
cell, start with the Navier-Stokes equation
1 ab(t)
) (6)

2 = — . = —_—
V2p=—DV-u Dt(b(t) el

J
—Vv+(v-V)V|=—Vp+uV?3v. 2)

at
Most of the assumptions made in the derivation of Dar- Now consider the problem of an |n|t|aIIy circular interface

cy’'s law for flow in a Hele-Shaw cell can be made: the between two fluids placed Symmetrically in a cell of external

Laplacian of the velocity is the greatest in thdirection and ~ radiusRe,; (Fig. 2). The pressure has a circularly symmetric

the termp(v-V)v can be ignored relative to the viscosity Solution

term. If, however, the frequency at which the upper plate is

moved is sufficiently high the(d/dt)v term cannot be ig- 1

nored.(The amplitude of the motion must not be so large as p(r)=7D

to produce high velocities and thus require returning to the

full Navier-Stokes equation.Finally, as in the ordinary Note that the constant of integratiGhdoes not depend an
Hele-Shaw cell, we assume that the dependence of #m&l 1), i general is a function of time and the position of the

y components of the velocity onis simply parabolic. For jnterfaceR. The continuity equation yields a solution for the
instance, takev,(z)=az(z—Db). Integrating overz yields

p

1 ab(t)

= 2
b() ot re+Cin(r)+pg.

b 5 A = velocity
u,= (1) [gvdz=—ab?/6, or a=—6u,/b“. Combining
these assumptions yields 1/ 1 ab(t) c’
: “f:‘i(mT)”T’

pﬁvx=—Vp+2/.La 3
o . ) with C andC’ related byC=D,C’. If both fluids are incom-

and a similar equation for thecomponent of. Integrating  pressible then continuity at the origin requi@s-C’=0. If

Eq. (3) overz from 0 tob yields the new equation far in - the inner fluid is compressible, these terms survive in the

the x-y plane equations for the outer fluid.
Consider first perturbations of the interface in the case of

o) (1 124
plul e b(D) 7t (t)

u-+ b(1)2 u=—-Vp, (4  twoincompressible fluids. Following Patersif, introduce
where the gradient is now taken only in tkey plane. The

the expression for a perturbation of the interface in the form
term p([ 1/b(t)](4/dt)b(t))u arises from bringing the inte-

dr=ah(t)e"’, n=1,2,3... .
Such a perturbation will result in a change in the pressure

gration overz inside the time derivative, sindeis an explicit ~ SUCh that
function of time. -
1 1 db(t)) , A v
IV. LINEAR STABILITY ANALYSIS P=7P gy o )T DA R e

For convenience define an operator
wherej =1 for the inner fluid and 2 for the outer. Requiring
d  p db(t) 12u continuity in the velocity at the interfadgo first order ina)

PElP T o "ot b2 atr=R(t) yields
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J 92
N lR(t)[24,u< h(t) +pb(t)( b(t))(ﬁh(t) +2pb(t)(Wh(t)H

2 nb(t)2

The pressure drop across the interface is given by the surface The pressure of the inner fluid is assumed to be uniform

tensiono times the curvature of the interfaege so throughout. Since the gap is set typically quite snildbs
than 0.3 mm and the surrounding materials have high ther-
d2 mal conductivity, the compression can safely be viewed as
5 1 dr+ d—azdr isothermal. Thus, for the circularly symmetric solution,

p1(t)=p1(0)R(0)%b(0)/[b(t)R(t)?]. Assuming that the
cell is not moving beforé =0, py=p1(0)=Pextt o (2/bg)
+(1/Ry) ], whereRy=R(0), by=b(0), andpe,; is the pres-
To first order ina, these equations yield a differential sure just outside the celand is assumed to be constant

Pi=P=0\ gt g~ Rz

equation forh(t), The outer fluid has the initial pressure
LR o Tl B bt L P POl P in| —
dt2 ( ) 2b(t)2 p1 +p ( ) ( ) dt ( ) p(r)_ZDt WT (r _Rext)+c n Rext +pexta
1 2

d
(p2_p1)b(t)2W b(t)

J’_ —_—
2b(t)*(p1+p2) whereR,,; is the outer radius of the cell. The constahts

calculated by integrating the gradient of the pressure from
)3(n —n)b(t) )h(t) I =Rext t0 r =Ry and using

d
12 pa— pa)n g (D +2 Rt

=0. o 1
b T

pl(t)=[p2(r,t)+a

_‘
I
Pyl

When the volume of the inner fluid must be conserved,
R(t)=R(0)/b(0)/b(t). The net result is a damped oscilla- at the unperturbed interface.
tor equation forh(t) in which the damping ternithe coeffi- Following the same procedure as before, the interface is
cient ofdh/dt) and the restoring terrfthe coefficient ofh)  perturbed bydr and the continuity of velocity and pressure at
are both functions of time. While such an equation cannot irthe interface are invoked. The end result is a differential
general be solved in closed form, it is clear that the perturequation forh(t),
bation will grow rapidly whenever the “damping” or “re-
storing” terms become negative.

Numeric solutions of the equations for two simple immis-
cible fluids(paraffin oil as the inner fluid, water as the oyter dt? h(t)+ 2'y(t)
yield predictions for the drive strength necessary to see the
instability. Using parameters typical for this apparafbg
=290um, f=60Hz, R(0)=0.031 m], the calculations pre- where
dict that the interface will not become unstable uriil
=39um atn=105.

The case of the inner fluid being compressible is more
complex, not simply because the fpterm cannot be ig- y(t)= 2b(1)2 b(V) 3 b(t)+24_
nored in the unperturbed solution for the pressure, but also
because the coefficie@’ in the velocity is itself governed
by a differential equation. and

d2 d ,
-h(D)+02(Dh(1)=0

(n2—1)c 6u db 1 d2b
TR b%padt’ 2pae’”
Q2(t)= 1 (<2Ro+bo>Roo+<R2b—R§bo>Pext 3ud 1d% \|n,

5 e et

bR'p b3p dt~ 4 ae®
R

ext
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“ FIG. 4. The small traveling waves that appear on the interface
_\'T\_J before the growth of the larger, stationary fingers. The horizontal
0 5 10 15 20 25 extent of the figure is about 5 mm, the wave amplitude about 0.3
by(pm) mm.

FIG. 3. Calculated growth exponent for a sinusoidal pel"[urba-predicted level for the instability(These appear ab,

tion after ten periods of the plate drive as a function of the drive— 25um.) Figure 5 shows the growth of the highly irregular
amplitudeb, and the number of wavelengths around the interface fingers atb,=30um as they convect around the interface.
The average plate gap,=290um and the frequency of the drive The onset of these fingers is always convective—they do
is f=60Hz. The growth exponent first becomes positivelicat- o+ 5 near simultaneously around the interface. The fingers
Ing “nsr:able grol\/\{t}ﬁorfnzzg Whenbl:gﬁ“g For these pdar";m‘ can also be induced by a finite perturbation. That is, if the
fei:‘er:rst :rua?gz rt;br arc;e Irst sees wavebat25um and the interface is being driven at an amplitude above the onset of

9 pt &by i the smaller wavescall thisb,,), but below the level for the
spontaneous growth of the fingeisall this b;), the fingers
can still be induced by perturbing the interface with an object

laced between the plates and touched to the interface. Also,

nce the nonlinear waves are established), ifs reduced to
below b but remains above,,, the fingers will persist in-
definitely. Even as the driving amplitude is lowered further,
the interface returns to circular by leaving fewer and fewer
fingers, rather than by reducing the size of the fingers.

It is not clear which of these transitions corresponds to the
nstability predicted by the linear stability analysis. It is plau-
Ssible that there exists an absolute instability at a vdiye

whereR and b are both functions of time only. A further
complication in this case is that the position of the interfac
is not simply related to the plate gap, but that together wit
the constantC’ it is governed by a set of coupled dif-
ferential equations: D,C’'=C and d/dtR=u,(r,t)|,—gr
=(1/bd/dtb)R+C’/R. Shown in Fig. 3 is the calculated
growth of perturbation assuming sinusoidal driving of the
platesb(t) =by+ b, sin(wt) with water surrounding air. The
plot shows an example of the growth of a perturbation afteq
several periods of the drive as a function of drive amplitud

b, and the number of wavelengths around the interface which is always higher thab;, but is always masked by

- For typical_ experimental - values[bo=290um, T gmay put finite, perturbations which induce the growth of
=60Hz, R(0)=0.031m], with air as the inner fluid and ¢ fingers and destroy the circular interface.
water as the outer, the interface first becomes unstable at a tha interface is more stable than predicted by the linear

drive amplitude ofo,=9.6.m atn=23. stability analysis, with the waves and fingers appearing on

the interface at values of the driving amplitude more than
V. EXPERIMENTAL RESULTS twice those predicted. Wetting effects, which are obviously
_ B important, but are not included in this linear stability analysis
A. Onset of the instability should work to stabilize the interface and increase the pre-
Several runs were made in the case of an incompressibicted driving amplitude of the onset of the instability closer
fluid (watep surrounding a compressible fluidir). The up-  to the observed values. The application of the velocity de-
per plate was driven sinusoidally and the movement meapendent wetting correction to the pressure jump at the inter-
sured with an attached accelerometer. Inner bubble radface of Park and Holms|g] to this problem is not straight-
ranged from 1 to 4 cm; the average plate §gdgrom 230to  forward. Their analysis gives the asymptotic correction for a
420 um; the frequency from 30 to 90 Hz. Most runs were finger travelling with constant velocity.
made withb,=290um, andf=60Hz. Also, the assumption of a parabolic profile feras a
When the plate is driven well below the threshold of thefunction of z may need to be modified. While using this
instability, the interface anneals to a circle, even if the inter-
face starts off irregular or disconnected. As the amplitude of 9
the drive is increased microscopic perturbations will grow
and show up as barely visible waves that run along the in-
terface. As the amplitude of the drive is further increased,
another transition occurs, this one to large, stationary anc
highly irregularly shaped fingers.
Several figures are shown to illustrate the nature of theg: ks
instability. For all, the inner fluid is air af=20 °C and the )
outer fluid is water with fluorescein dye. The initial gap is  FiG. 5. Three images, 1/5 second apart—12 periods of the drive,
bo=290um. The radius of the initial, undriven interfaé®  showing the convection of the fully nonlinear fingers around the
=0.03m. Figure 4 shows the small waves that appear on thiaterface, just above the onset of the instability. The radius of the
interface as the amplitude of the drive is increased toward theircle at this point in the drive is 0.032 m.
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08 T B. Nonlinear fingers
g - Increasing the amplitude of the drive abdwecauses the
S 0.4 fingers to break off the interface or to collide and introduce
£ . new bubbles into the dynamics. Ag is increased further
& 00— disturbances on the interface grow larger, until the inner
J 04 ] bubble itself is no longer stable. The inner fluid breaks into
e __ many smaller bubbles which eventually migrate out of the
| | | | | cell. (The dynamics of the bubbles are outside the realm of
0.00 0.05 0.10 0.15 0.20

this papen.
If the system is driven hard enough to sustain the fingers,
FIG. 6. The autocorrelation function of the radius of the inter- PUt not hard enough to cause the fingers to collide or break
face as a function of scaled arc length, averaged for ten periods 6iff, one of the most curious features of the unstable interface
the drive for the interface about 1 min after the images of Fig. 5. can be seen. Viewing the interface at the same phase of the
drive each timdat the point where the interface is the most
profile gives good agreement with the experiment for the,ﬁ])(tefndeOi one can Sf?hthat the ||nterI§1 ce _Tﬂs a memotryhand
motion of the stable interfacR=R(t), the high velocities € mglers aptr;ear a ehsame oga lon. S ey ?re not, f.OW'
associated with the rapid motion of the unstable fingers ma(}z/\_/er, aways the same shape anc size. Sometimes a ninger
require its modification. |_II return to the _same_shqpe and size with each period of the
Understanding the wavelength selection of these fingers i?”ve’ but sometlmgs it might alterna_te betw_een tWO. sh_apes.
problematic. First, the fingers very quickly grow away from h fact, a stable period of two, four, six and (_a|ght qscﬂlaﬂons
a sinusoidal shape and nonlinear growth factors may theﬂa\lﬁ beeq Obfhe rvled, ?hs V\ﬁu a?_ fully c?aouc;hoscnlatmns.
become important. Second, the highly distorted shape meanst. ea?l:rr]mg i ef engih o f N t!nger?t_rom i N aver_agedp?—
that the interface position can no longer be characterized asaon Of In€ Intertace as a function of ime, ime series data
single-valued function of the angle. fpr any fmger can be obtained. Figure 7. shows portions of
In order to analyze the interface, tkey interface data are time series dat.a for the Ier?gths gf ‘WO fingers for' one run.
transformed into radius as a function of arc lengte The E’Oth fmg_ers dlsp_lay chaotic oscillations, but during some
autocorrelation functiorC,, of r(s) is then examined. By time perlo_ds their Ie_ngth changes are clear_ly correlated,
: . : where during other times they are not. The fingers can be
creating a new scaled variabdé= s/s,, cOrrelations func- . . . . . )
tions from several frames of the video can be averaged viewed as nonlinear oscillators which can display chaotic

. . : : ehavior, but are also clearly coupled to their surrounding

) Cr, for mterfgmal images just beyond the onset Images o ingers. Such systems of coupled chaotic oscillators are
Fig. 5 has _|ts first peak a_t a wavelength corresponding t_o known to display synchronizatiofl0]. This feature of fin-
=16.25, withn=23 (the first unstable number of waves in gers moving in and out of synchronization is a common fea-
the calculationsshowing up as a strong minimufpeak to  tyre whenever the interface has sustained fingers.

trough distance Figure 6 shows the averaged correlation  The temporalbehavior of an individual finger is clearly
function for ten images about a minute after the onset of thgonnected to the spatial patterns in the interface nearby.
fingers. The parameters of the current experimental apparat@imilar temporal patterns in the times series data of one fin-
cannot be varied sufficiently to test whether this corresponger are always seen to correlate to similar shapes. Figure 8
dence inC,, with the predicted first unstable wave number isshows a closeup of a portion of the interface as that region
coincidental or not. undergoes period-four behavior.

L
S '=5/8,.¢

a-Finger A

100 —o—Fmi;er B

FIG. 7. Finger lengths vs time for two nearby
fingers undergoing chaotic oscillations.

Finger height (pixels)

Time (sec)
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FFFFF

FIG. 8. Five images, each 1/60 s apart—one period of the>
drive—showing a portion of the driven interface undergoing period ors.
four behavior. The vertical extent of each image is approximately 1
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The experimental result for the case of an inner compress-
ible fluid and an outer incompressible fluid show good agree-
ment with the theoretical computations for the onset of the
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