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Fingering in a driven Hele-Shaw cell

Steven N. Rauseo*
Physics Department, Wheaton College, 501 College Avenue, Wheaton, Illinois 60187

~Received 26 May 2000; revised manuscript received 14 August 2000!

A modified Hele-Shaw cell in which the plate gap can be modulated in time was constructed. Highly
nonlinear fingers on the interface between air and water in the cell were observed as the plate gap was driven
at a variety of frequencies, but typically near 60 Hz. Modified equations to describe the flow in a periodically
driven cell were derived and the linear stability analysis of waves on a circular fluid-fluid interface was
performed.

PACS number~s!: 47.20.Ma, 47.54.1r, 05.45.Xt
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I. INTRODUCTION

The Hele-Shaw cell~two parallel plates separated by
small gap through which fluids flow! has been used exten
sively to model fluid flow in highly resistive porous medi
as well as a device for the study of simple pattern-form
systems@1,2#. Hele-Shaw cells are used to model flow
porous media since in both systems the fluid velocity is s
ply proportional to the gradient of the pressure. Darcy’s l
expresses this asv52M“p. In the Hele-Shaw cell, the ve
locity is averaged over the spatial dimension perpendic
to the plates, andM5b2/12m, whereb is the gap between
the plates andm is the fluid viscosity.

The unstable interface between two fluids of differing v
cosity form one of the simplest pattern-forming system
Since the velocity is proportional to the gradient of the pr
sure, and for“•v50 whenr is constant in time, the pres
sure obeys Laplace’s equation¹2p50. Thus, the unstable
growth of a driven interface is an example of Laplaci
growth, a class of problems that includes dielectric bre
down, diffusion-limited aggregation~DLA !, and the colonial
growth of certain organisms. Multiple variations have be
studied extensively: immiscible, miscible, and no
Newtonian fluids, rectangular, and circular geometries,
well as cells with various symmetries etched on one or b
faces@3–6#.

A modification of the Hele-Shaw cell was designed a
built that allows the gap to be varied in time. The motivati
was to introduce a method in which the interface could
driven periodically. For the parameter values where the fl
can still be viewed as two dimensional, the plate variat
has the effect of drawing fluid out~a sink!, or putting fluid in
~a source!, at each point in the plane. Thus the pressure is
longer governed by Laplace’s equation, but by Poisso
equation.

Equations for the fluid velocity in thex-y plane are de-
rived in this paper, and using these, the linear stability an
sis for an initially circular interface between two fluids in th
cell is performed. Preliminary experimental results are
ported, especially the behavior of the fingers which form
the driven interface.

*Email address: steven.n.rauseo@wheaton.edu
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II. EXPERIMENTAL APPARATUS

The essential portion of the modified Hele-Shaw cell is
7.62 cm~3 in! radius circular quartz plate below and a 6.3
cm ~2.5 in.! radius stainless-steel upper plate. The low
quartz plate is a 1/4 wavelength optical flat and is thus fla
under 0.2mm. The upper plate was machined to be flat
about 15mm, and has 3mm deep random scratches from th
finishing process. For the experiments reported here, the
between the plates was in the range 230–420mm. The upper
plate is supported via a 1/4 in. thick aluminum plate that
itself attached to a Terfenol actuator@8#, which allows the
plate to be moved up to 80mm up or down at frequencies u
to 2 kHz. The lower plate is supported in a stainless-st
base, with a 6.35 cm radius hole that allows the fluids in
cell to be observed from below~Fig. 1!.

The cell was typically driven near 60 Hz, to keep it f
from any mechanical resonances in the apparatus and t
low synchronization with a videocamera’s field rate of 59.
Hz. Other multiples or factors of 60 Hz were also used~e.g.,
180 or 15 Hz!. The fluids used were most typically water an
air. The water had 3 g/liter of fluorescein dye added and
apparatus was illuminated from below with ultraviolet ligh

III. EQUATION MODIFICATION

Both the continuity equation and Darcy’s law must
modified for this new cell. One wishes to reduce the probl
to two spatial dimensions by averaging all variables over

FIG. 1. Cut away side view of the cell. The inner fluid is co
fined to the space between the plates, while the outer fluid is
tween and surrounds the plates. The axes defined in the tex
shown. The fluids are illuminated and viewed from below.
8058 ©2000 The American Physical Society
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PRE 62 8059FINGERING IN A DRIVEN HELE-SHAW CELL
direction perpendicular to the plates.~Call this thez direc-
tion.! Define a two-dimensional velocityu to be thex andy
components of thez-averaged velocity, e.g.,ux(x,y)
5(1/b)*0

bvx(x,y,z)dz, where the origin is set at the cent
of the cell in thex andy directions and at the bottom plate
the z direction.

Begin with the continuity equationr(“•v)1(]r/]t)
50. In the case where the fluid densityr is constant with
time, one is left with (]/]x)vx1(]/]y)vy1(]/]z)vz50.
Averaging the first two terms over thez direction simply
gives the divergence of thez-averaged velocityu. The
third term is then (1/b)*0

b@(]/]z)vz#dz5vz(x,y,z5b)
2vz(x,y,z50).

The z component of the velocity must be zero at t
lower, stationary plate, but it must match the motion of t
top plate, so it is (]/]t)b(t). The new continuity equation is
therefore

“•u52
1

b~ t !

]

]t
b~ t !. ~1!

To derive the new equation of motion for the fluids in t
cell, start with the Navier-Stokes equation

rS ]

]t
v1~v•“ !vD52“p1m¹2v. ~2!

Most of the assumptions made in the derivation of D
cy’s law for flow in a Hele-Shaw cell can be made: t
Laplacian of the velocity is the greatest in thez direction and
the termr(v•“)v can be ignored relative to the viscosi
term. If, however, the frequency at which the upper plate
moved is sufficiently high ther(]/]t)v term cannot be ig-
nored.~The amplitude of the motion must not be so large
to produce high velocities and thus require returning to
full Navier-Stokes equation.! Finally, as in the ordinary
Hele-Shaw cell, we assume that the dependence of thex and
y components of the velocity onz is simply parabolic. For
instance, takevx(z)5az(z2b). Integrating overz yields
ux5(1/b)*0

bvxdz52ab2/6, or a526ux /b2. Combining
these assumptions yields

r
]

]t
vx52“p12ma ~3!

and a similar equation for they component ofv. Integrating
Eq. ~3! over z from 0 to b yields the new equation foru in
the x-y plane

rS ]

]t
uD1rS 1

b~ t !

]

]t
b~ t ! Du1

12m

b~ t !2 u52“p, ~4!

where the gradient is now taken only in thex-y plane. The
term r„@1/b(t)#(]/]t)b(t)…u arises from bringing the inte
gration overz inside the time derivative, sinceb is an explicit
function of time.

IV. LINEAR STABILITY ANALYSIS

For convenience define an operator

Dt5S r
]

]t
1

r

b~ t !

]b~ t !

]t
1

12m

b~ t !2D
-

s

s
e

which is an operator in time only. Then the equation of m
tion @Eq. ~4!# can be written as

Dtu52“p. ~5!

Taking the divergence of both sides and combining with
continuity equation@Eq. ~1!# yields the Poisson equation fo
the pressure

¹2p52Dt“•u5DtS 1

b~ t !

]b~ t !

]t D . ~6!

Now consider the problem of an initially circular interfac
between two fluids placed symmetrically in a cell of extern
radiusRext ~Fig. 2!. The pressure has a circularly symmetr
solution

p~r !5
1

4
DtS 1

b~ t !

]b~ t !

]t D r 21C ln~r !1p0 .

Note that the constant of integrationC does not depend onr,
but in general is a function of time and the position of t
interfaceR. The continuity equation yields a solution for th
velocity

ur52
1

2 S 1

b~ t !

]b~ t !

]t D r 1
C8

r
,

with C andC8 related byC5DtC8. If both fluids are incom-
pressible then continuity at the origin requiresC5C850. If
the inner fluid is compressible, these terms survive in
equations for the outer fluid.

Consider first perturbations of the interface in the case
two incompressible fluids. Following Paterson@7#, introduce
the expression for a perturbation of the interface in the fo
dr5ah(t)einu, n51,2,3, . . . .

Such a perturbation will result in a change in the press
such that

p~r !5
1

4
DtS 1

b~ t !

]b~ t !

]t D r 21~21! jAS r n

RnD ~21! j 21

einu,

where j 51 for the inner fluid and 2 for the outer. Requirin
continuity in the velocity at the interface~to first order ina!
at r 5R(t) yields

FIG. 2. View of cell from below definingRext andR(t).
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R~ t !F24mS ]

]t
h~ t ! D1rb~ t !S ]

]t
b~ t ! D S ]

]t
h~ t ! D12rb~ t !S ]2

]t2 h~ t ! D G
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The pressure drop across the interface is given by the sur
tensions times the curvature of the interfacek, so

p12p25sS 2

b
1

1

R
2

dr1
d2

du2 dr

R2
D .

To first order in a, these equations yield a differentia
equation forh(t),

d2

dt2
h~ t !1

1

2b~ t !2 S 24m11m2

r11r2
1b~ t !

d

dt
b~ t ! D S d

dt
h~ t ! D

1
1

2b~ t !3~r11r2! S ~r22r1!b~ t !2
d2

dt2
b~ t !

112~m22m1!n
d

dt
b~ t !12

s

R~ t !3 ~n32n!b~ t !3Dh~ t !

50.

When the volume of the inner fluid must be conserv
R(t)5R(0)Ab(0)/b(t). The net result is a damped oscilla
tor equation forh(t) in which the damping term~the coeffi-
cient of dh/dt! and the restoring term~the coefficient ofh!
are both functions of time. While such an equation canno
general be solved in closed form, it is clear that the per
bation will grow rapidly whenever the ‘‘damping’’ or ‘‘re-
storing’’ terms become negative.

Numeric solutions of the equations for two simple imm
cible fluids~paraffin oil as the inner fluid, water as the oute!,
yield predictions for the drive strength necessary to see
instability. Using parameters typical for this apparatus@b0
5290mm, f 560 Hz, R(0)50.031 m], the calculations pre
dict that the interface will not become unstable untilb1
539mm at n5105.

The case of the inner fluid being compressible is m
complex, not simply because the ln(r) term cannot be ig-
nored in the unperturbed solution for the pressure, but a
because the coefficientC8 in the velocity is itself governed
by a differential equation.
ce

,

n
r-

e

e

o

The pressure of the inner fluid is assumed to be unifo
throughout. Since the gap is set typically quite small~less
than 0.3 mm! and the surrounding materials have high th
mal conductivity, the compression can safely be viewed
isothermal. Thus, for the circularly symmetric solutio
p1(t)5p1(0)R(0)2b(0)/@b(t)R(t)2#. Assuming that the
cell is not moving beforet50, p05p1(0)5pext1s@(2/b0)
1(1/R0)#, whereR05R(0), b05b(0), andpext is the pres-
sure just outside the cell~and is assumed to be constant!.

The outer fluid has the initial pressure

p~r !5
1

4
DtS 1

b~ t !

]b~ t !

]t D ~r 22Rext
2 !1C lnS r

Rext
D1pext ,

whereRext is the outer radius of the cell. The constantC is
calculated by integrating the gradient of the pressure fr
r 5Rext to r 5R0 and using

p1~ t !5Fp2~r ,t !1sS 2

b
1

1

r D U
r 5R

G ,

at the unperturbed interface.
Following the same procedure as before, the interfac

perturbed bydr and the continuity of velocity and pressure
the interface are invoked. The end result is a differen
equation forh(t),

d2

dt2
h~ t !12g~ t !

d

dt
h~ t !1V2~ t !h~ t !50

where

g~ t !5
1

4b~ t !2 S b~ t !
b

dt
b~ t !124

m2

r2
D

and
V2~ t !5S ~n221!s

R3r
1

6m

b3r

d

dt
b1

1

2b

d2

dt2
b1

1

lnS R

Rext
D S ~2R01b0!R0s1~R2b2R0

2b0!Pext

bR4r
2

3m

b3r

d

dt
b2

1

4

d2

dt2
bD D n,
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PRE 62 8061FINGERING IN A DRIVEN HELE-SHAW CELL
where R and b are both functions of time only. A furthe
complication in this case is that the position of the interfa
is not simply related to the plate gap, but that together w
the constantC8 it is governed by a set of coupled di
ferential equations: DtC85C and d/dtR5ur(r ,t)ur 5R
5(1/bd/dtb)R1C8/R. Shown in Fig. 3 is the calculate
growth of perturbation assuming sinusoidal driving of t
platesb(t)5b01b1 sin(vt) with water surrounding air. The
plot shows an example of the growth of a perturbation a
several periods of the drive as a function of drive amplitu
b1 and the number of wavelengths around the interfacen.

For typical experimental values,@b05290mm, f
560 Hz, R(0)50.031 m], with air as the inner fluid an
water as the outer, the interface first becomes unstable
drive amplitude ofb159.6mm at n523.

V. EXPERIMENTAL RESULTS

A. Onset of the instability

Several runs were made in the case of an incompress
fluid ~water! surrounding a compressible fluid~air!. The up-
per plate was driven sinusoidally and the movement m
sured with an attached accelerometer. Inner bubble r
ranged from 1 to 4 cm; the average plate gapb0 from 230 to
420 mm; the frequencyf from 30 to 90 Hz. Most runs were
made withb05290mm, and f 560 Hz.

When the plate is driven well below the threshold of t
instability, the interface anneals to a circle, even if the int
face starts off irregular or disconnected. As the amplitude
the drive is increased microscopic perturbations will gr
and show up as barely visible waves that run along the
terface. As the amplitude of the drive is further increas
another transition occurs, this one to large, stationary
highly irregularly shaped fingers.

Several figures are shown to illustrate the nature of
instability. For all, the inner fluid is air atT520 °C and the
outer fluid is water with fluorescein dye. The initial gap
b05290mm. The radius of the initial, undriven interfaceR
50.03 m. Figure 4 shows the small waves that appear on
interface as the amplitude of the drive is increased toward

FIG. 3. Calculated growth exponent for a sinusoidal pertur
tion after ten periods of the plate drive as a function of the dr
amplitudeb1 and the number of wavelengths around the interfacn.
The average plate gapb05290mm and the frequency of the driv
is f 560 Hz. The growth exponent first becomes positive~indicat-
ing unstable growth! for n523 whenb159.6mm. For these param
eters the actual interface first sees waves atb1525mm and the
fingers erupt atb1530mm.
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predicted level for the instability.~These appear atb1
525mm.! Figure 5 shows the growth of the highly irregula
fingers atb1530mm as they convect around the interface

The onset of these fingers is always convective—they
not appear simultaneously around the interface. The fing
can also be induced by a finite perturbation. That is, if
interface is being driven at an amplitude above the onse
the smaller waves~call this bw!, but below the level for the
spontaneous growth of the fingers~call this bf!, the fingers
can still be induced by perturbing the interface with an obj
placed between the plates and touched to the interface. A
once the nonlinear waves are established, ifb1 is reduced to
below bf but remains abovebw , the fingers will persist in-
definitely. Even as the driving amplitude is lowered furth
the interface returns to circular by leaving fewer and few
fingers, rather than by reducing the size of the fingers.

It is not clear which of these transitions corresponds to
instability predicted by the linear stability analysis. It is pla
sible that there exists an absolute instability at a valueb1
which is always higher thanbf , but is always masked by
small, but finite, perturbations which induce the growth
the fingers and destroy the circular interface.

The interface is more stable than predicted by the lin
stability analysis, with the waves and fingers appearing
the interface at values of the driving amplitude more th
twice those predicted. Wetting effects, which are obviou
important, but are not included in this linear stability analy
should work to stabilize the interface and increase the p
dicted driving amplitude of the onset of the instability clos
to the observed values. The application of the velocity
pendent wetting correction to the pressure jump at the in
face of Park and Holmsy@9# to this problem is not straight
forward. Their analysis gives the asymptotic correction fo
finger travelling with constant velocityv.

Also, the assumption of a parabolic profile forv as a
function of z may need to be modified. While using th

-
e

FIG. 4. The small traveling waves that appear on the interf
before the growth of the larger, stationary fingers. The horizon
extent of the figure is about 5 mm, the wave amplitude about
mm.

FIG. 5. Three images, 1/5 second apart—12 periods of the dr
showing the convection of the fully nonlinear fingers around
interface, just above the onset of the instability. The radius of
circle at this point in the drive is 0.032 m.
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8062 PRE 62STEVEN N. RAUSEO
profile gives good agreement with the experiment for
motion of the stable interfaceR5R(t), the high velocities
associated with the rapid motion of the unstable fingers m
require its modification.

Understanding the wavelength selection of these finge
problematic. First, the fingers very quickly grow away fro
a sinusoidal shape and nonlinear growth factors may t
become important. Second, the highly distorted shape m
that the interface position can no longer be characterized
single-valued function of the angle.

In order to analyze the interface, thex-y interface data are
transformed into radiusr as a function of arc lengths. The
autocorrelation functionCrr of r (s) is then examined. By
creating a new scaled variables85s/smax correlations func-
tions from several frames of the video can be averaged.

Crr for interfacial images just beyond the onset images
Fig. 5 has its first peak at a wavelength corresponding tn
516.25, withn523 ~the first unstable number of waves
the calculations! showing up as a strong minimum~peak to
trough distance!. Figure 6 shows the averaged correlati
function for ten images about a minute after the onset of
fingers. The parameters of the current experimental appar
cannot be varied sufficiently to test whether this corresp
dence inCrr with the predicted first unstable wave number
coincidental or not.

FIG. 6. The autocorrelation function of the radius of the int
face as a function of scaled arc length, averaged for ten period
the drive for the interface about 1 min after the images of Fig.
e

y

is

n
ns

s a

f

e
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-

B. Nonlinear fingers

Increasing the amplitude of the drive abovebf causes the
fingers to break off the interface or to collide and introdu
new bubbles into the dynamics. Asb1 is increased further
disturbances on the interface grow larger, until the inn
bubble itself is no longer stable. The inner fluid breaks in
many smaller bubbles which eventually migrate out of t
cell. ~The dynamics of the bubbles are outside the realm
this paper.!

If the system is driven hard enough to sustain the finge
but not hard enough to cause the fingers to collide or br
off, one of the most curious features of the unstable interf
can be seen. Viewing the interface at the same phase o
drive each time~at the point where the interface is the mo
extended!, one can see that the interface has a memory
the fingers appear at the same location. They are not, h
ever, always the same shape and size. Sometimes a fi
will return to the same shape and size with each period of
drive, but sometimes it might alternate between two shap
In fact, a stable period of two, four, six and eight oscillatio
have been observed, as well as fully chaotic oscillations.

Measuring the length of the fingers from the average
sition of the interface as a function of time, time series d
for any finger can be obtained. Figure 7 shows portions
time series data for the lengths of two fingers for one r
Both fingers display chaotic oscillations, but during som
time periods their length changes are clearly correlat
where during other times they are not. The fingers can
viewed as nonlinear oscillators which can display chao
behavior, but are also clearly coupled to their surround
fingers. Such systems of coupled chaotic oscillators
known to display synchronization@10#. This feature of fin-
gers moving in and out of synchronization is a common f
ture whenever the interface has sustained fingers.

The temporalbehavior of an individual finger is clearly
connected to the spatial patterns in the interface nea
Similar temporal patterns in the times series data of one
ger are always seen to correlate to similar shapes. Figu
shows a closeup of a portion of the interface as that reg
undergoes period-four behavior.

-
of
y
FIG. 7. Finger lengths vs time for two nearb
fingers undergoing chaotic oscillations.
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VI. CONCLUSION

A modification of the Hele-Shaw cell in which the pla
gap can be varied with time has been built. Appropri
modifications to the equation of motion and the continu
equation for fluids in such a cell were derived as were s

FIG. 8. Five images, each 1/60 s apart—one period of
drive—showing a portion of the driven interface undergoing per
four behavior. The vertical extent of each image is approximate
cm.
. A

ta
e

-

bility conditions for the interface between two fluids in th
cell.

The experimental result for the case of an inner compre
ible fluid and an outer incompressible fluid show good agr
ment with the theoretical computations for the onset of
instability on the interface. As the interface is driven hard
highly nonlinear waves or fingers appear with several cu
ous properties, including acting as coupled chaotic osci
tors.
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